Geometric Realizations of Hermitian Curvature Models

نویسنده

  • M. BROZOS-VÁZQUEZ
چکیده

We show that a Hermitian algebraic curvature model satisfies the Gray identity if and only if it is geometrically realizable by a Hermitian manifold. Furthermore, such a curvature model can in fact be realized by a Hermitian manifold of constant scalar curvature and constant ⋆-scalar curvature which satisfies the Kaehler condition at the point in question.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Realizations of Curvature Models by Manifolds with Constant Scalar Curvature

We show any Riemannian curvature model can be geometrically realized by a manifold with constant scalar curvature. We also show that any pseudo-Hermitian curvature model, para-Hermitian curvature model, hyperpseudo-Hermitian curvature model, or hyper-para-Hermitian curvature model can be realized by a manifold with constant scalar and ⋆-scalar curvature.

متن کامل

ar X iv : 0 90 4 . 11 92 v 1 [ m at h . D G ] 7 A pr 2 00 9 GEOMETRIC REALIZATIONS OF CURVATURE

We study geometric realization questions of curvature in the affine, Riemannian, almost Hermitian, almost para Hermitian, almost hyper Hermit-ian, almost hyper para Hermitian, Hermitian, and para Hermitian settings. We also express questions in Ivanov–Petrova geometry, Osserman geometry, and curvature homogeneity in terms of geometric realizations.

متن کامل

On geometric and motivic realizations of variations of Hodge structure over Hermitian symmetric domains

of the Dissertation On geometric and motivic realizations of variations of Hodge structure over Hermitian symmetric domains

متن کامل

Geometric Realizations of Fordy–kulish Nonlinear Schrödinger Systems

A method of Sym and Pohlmeyer, which produces geometric realizations of many integrable systems, is applied to the Fordy-Kulish generalized non-linear Schrödinger systems associated with Hermitian symmetric spaces. The resulting geometric equations correspond to distinguished arclength-parametrized curves evolving in a Lie algebra, generalizing the localized induction model of vortex filament m...

متن کامل

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008